
Pattern-Mining based Cryptanalysis of Bloom
Filters for Privacy-Preserving Record Linkage?

Peter Christen1, Anushka Vidanage1, Thilina Ranbaduge1, and Rainer Schnell2

1 Research School of Computer Science, The Australian National University,
Canberra, Australia. Contact: peter.christen@anu.edu.au

2 Methodology Research Group, University Duisburg-Essen, Duisburg, Germany.

Abstract. Data mining projects increasingly require records about in-
dividuals to be linked across databases to facilitate advanced analytics.
The process of linking records without revealing any sensitive or confiden-
tial information about the entities represented by these records is known
as privacy-preserving record linkage (PPRL). Bloom filters are a popu-
lar PPRL technique to encode sensitive information while still enabling
approximate linking of records. However, Bloom filter encoding can be
vulnerable to attacks that can re-identify some encoded values from sets
of Bloom filters. Existing attacks exploit that certain Bloom filters can
occur frequently in an encoded database, and thus likely correspond to
frequent plain-text values such as common names. We present a novel
attack method based on a maximal frequent itemset mining technique
which identifies frequently co-occurring bit positions in a set of Bloom
filters. Our attack can re-identify encoded sensitive values even when all
Bloom filters in an encoded database are unique. As our experiments on
a real-world data set show, our attack can successfully re-identify values
from encoded Bloom filters even in scenarios where previous attacks fail.
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1 Introduction

Applications in domains ranging from healthcare, business analytics and social
science research all the way to fraud detection and national security increasingly
require records about individual entities to be linked across several databases,
and commonly across different organizations. Linked individual-level databases
allow to improve data quality and enrich data, and open novel ways of data
analysis and mining not possible on a single database [4].

Due to the lack of common unique entity identifiers (such as social security
numbers or patient identifiers) across databases, linking records of individuals
most often requires identifying personal details such as names, addresses and
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dates of birth [4]. However, in many application areas growing concerns about
privacy and confidentiality increasingly limit the use of sensitive personal details
for linking databases across organizations [20].

Since the 1990s, the research area of privacy-preserving record linkage (PPRL)
has aimed to develop techniques for linking records that correspond to the same
entities across databases while protecting the privacy and confidentiality of these
entities [20]. The general idea behind PPRL is to encode sensitive identifying
attribute values (such as names, addresses, and dates of birth) and to conduct
the linkage using these encoded values. At the end of the PPRL process the or-
ganizations involved only learn which of their records are matched with records
from the other databases according to some decision model, but they cannot
learn any sensitive information about the other databases, while any external
attacker is not able to learn anything about these databases at all [20].

As surveyed by Vatsalan et al. [20], various encoding techniques have been
proposed for PPRL. They can be categorized into secure multi-party compu-
tation (SMC) and perturbation based techniques, as well as hybrid techniques
that combine aspects of both. While SMC techniques are accurate and provably
secure, they often incur high computation and communication costs. Perturba-
tion based techniques, on the other hand, are generally efficient and provide a
trade-off between linkage quality, scalability, and privacy.

One perturbation technique that has attracted much interest is Bloom filter
(BF) encoding [2,17]. As we describe in detail in the following section, a BF
is a bit array (initialized to 0) into which elements of a set are mapped into
by setting those positions to 1 that are selected by a set of hash functions. For
PPRL, the elements of these sets are commonly character q-grams as extracted
from the string values used for linking. The number of common 1-bits between
two BFs approximates the number of common encoded q-grams and allows the
calculation of the similarity between two BFs, as is illustrated in Fig. 1.

BF encoding has shown to allow accurate and efficient PPRL of large data-
bases, and first practical PPRL systems based on BF encoding are now be-
ing deployed [3,16]. However, recent work has shown that BFs can be suc-
cessfully attacked with the aim to re-identify the sensitive values encoded in
them [5,10,11,12,13,15]. These cryptanalysis attacks assume that some bit pat-
terns occur many times in an encoded BF database, allowing a mapping of
frequent bit patterns to frequent plain-text values (such as common names) to
identify the BF bit positions that possibly can correspond to certain q-grams
in a plain-text value. Most existing attacks also require knowledge of certain
parameters used in the BF encoding process, or they have high computational
costs making them impractical for attacking large databases.

Contributions: We present a novel attack method that employs a maximal
frequent itemset based pattern-mining approach (combining Apriori [1] and FP-
Max [7]) to identify frequently co-occurring bit positions in a BF database that
encode frequent q-grams in a plain-text database. Our attack can re-identify
q-grams and plain-text values even when each BF in an encoded database is
unique, and when an attacker has no knowledge of any parameters used in the
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Fig. 1. An example Dice coefficient similarity calculation of the first names ‘johnny’
and ‘john’ encoded in BFs, as described in Sect. 2. Hash collisions are shown in italics.

BF encoding process. Our evaluation on real-world data sets shows that our
attack can re-identify plain-text values even when several attributes have been
encoded into a BF, a situation where previous attacks would not be successful.

2 Background and Related Work

We now describe Bloom filter (BF) encoding for PPRL in more detail, and then
provide an overview of existing cryptanalysis attacks on encoded BF.

Bloom Filter Encoding for PPRL: BF encoding is a popular privacy
technique for PPRL due to its ability to calculate similarities between BF en-
coded string [6,17,20] and numerical [9,19] values, as well as its efficiency and
simplicity of implementation. As the recent study by Randall et al. [16] has
shown, in real-world applications PPRL based on encoded BFs can achieve link-
age quality similar to traditional linkage methods on unencoded values.

BFs were proposed by Bloom [2] to efficiently represent sets and test for set
membership. A BF b is a bit array of length lb initialized to 0. k independent
hash functions, h1, . . . , hk, are used to map the elements s in a set s into b by
setting the bit positions b[hj(s)] = 1, with 1 ≤ j ≤ k, 1 ≤ hj(s) ≤ lb, and ∀s ∈ s.

In PPRL, where most attributes used for linking contain strings, the set s
can be generated from character q-grams (sub-strings of length q [4]) extracted
from a string value using a sliding window approach [17]. As illustrated in Fig. 1,
the Dice coefficient (which is insensitive to many matching zeros) [4] can then be
used to calculate the similarity between two BFs b1 and b2, as: simD(b1,b2) =
2c/(x1 +x2), where c is the number of common bit positions that are set to 1 in
both BFs, and x1 and x2 are the number of bit positions set to 1 in b1 and b2,
respectively. Note that the hashing process can lead to collisions (where several
q-grams are hashed to the same position), leading to false positives [14,17].

Different methods of how to encode records into BFs have been proposed.
Generating one BF per attribute, known as attribute level BF (ABF), is one ap-
proach which has the advantage of allowing one similarity to be calculated per
attribute. However, ABFs are susceptible to attacks due to the frequency dis-
tribution of common attribute values [5]. Alternatively, two methods that hash
several attribute values of a record into one combined BF are the cryptographic
long term key (CLK) [18] and record level BFs (RBF) [6]. With CLK, q-grams
from several attributes are hashed into one BF, while in RBF the values from dif-
ferent attributes are first hashed into individual ABFs, and then bits are selected
from each ABF into one RBF according to weights assigned to attributes.



A double hashing scheme was initially proposed for BF encoding for PPRL
[17], where the k hash functions are based on the sum of the integer represen-
tation of two independent hash functions. This approach is however vulnerable
to attacks [10,15], as discussed below. An alternative to prevent against these
attacks is random hashing, where an integer representation of an element s to
be hashed is used as the seed of a random generator used for hashing [18].

Once the databases to be linked are encoded into BFs by their owners, they
are either sent to a linkage unit to calculate the similarity between pairs of BFs
and classify them as matches or non-matches, or BFs are exchanged among the
database owners to distributively calculate the similarities between BFs [17,20].

Cryptanalysis Attacks on Bloom Filter based PPRL: Because BF
encoding is now being used in practical PPRL applications [3,16], it is highly
important to identify the limits of this technique with regard to the privacy
protection it provides. As we now describe, BFs are prone to different attacks.

The first attack method proposed by Kuzu et al. [6,11] was based on a con-
straint satisfaction problem (CSP) solver which assigns values to variables such
that a set of constraints is satisfied. The attack is achieved by a frequency align-
ment of a set of BF encodings of records and sensitive plain-text values, where it
requires access to a global database where the encoded records and their frequen-
cies are drawn from. The attack was applied on a real patient database where it
was successful in re-identifying four out of 20 frequent names correctly [12].

More recently, Niedermeyer et al. [15] proposed an attack on BFs based on the
counts of q-grams extracted from frequent German surnames. From 7, 580 unique
surnames encoded into 10, 000 BFs, the authors manually re-identified the 934
most frequent ones. This work was extended by Kroll and Steinmetzer [10] into
a cryptanalysis of several attributes, which was able to re-identify 44% of plain-
text values correctly. Both these attack methods are however only applicable
with the double hashing approach used by Schnell et al. [17].

Christen et al. [5] recently proposed a novel efficient attack method that does
not require any knowledge of the BF encoding function and its parameters used.
The method aligns frequent BFs with frequent plain-text values and identifies
sets of q-grams that could have been hashed to certain bit positions or not. The
attack was successfully applied on large real databases and was able to correctly
re-identify the most frequent plain-text values within a few minutes.

The most recent attack by Mitchell et al. [13] depends on the strong assump-
tion that the adversary knows all parameters used in the BF encoding process.
First, a brute-force attack is used to identify all possible q-grams encoded in a
BF, then a graph is built which represents possible plain-text values that can
be generated from the identified q-grams in a BF. The evaluation on real-world
databases showed a 76.8% accuracy of correct one-to-one re-identifications.

The drawbacks of existing attacks on encoded BFs for PPRL are that they
require knowledge about certain parameters used during BF encoding, are com-
putationally expensive, and/or are only applicable if there are BFs and plain-
text values that occur frequently such that their frequency alignments can be
exploited. Our novel attack, presented next, overcomes these limitations.
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Fig. 2. Example of our proposed attack method, as described in Sect. 3. Using a fre-
quent pattern-mining approach, we first identify that bit positions p5 and p13 have
co-occurring 1-bits in the same three BFs (b1, b3 and b4) and therefore must encode
‘ma’ which is the only q-gram that occurs in three plain-text values. Next, we find that
positions p1 and p10 must encode ‘jo’ as they have co-occurring 1-bits in the same two
BFs (b2 and b5) and ‘jo’ is the only q-gram that occurs in two plain-text values. Based
on the identified q-grams and their bit positions, we learn that BFs b2 and b4 can only
encode ‘john’ and ‘joan’, while b1, b3 and b4 can encode ‘maude’, ‘mary’ or ‘max’.

3 Pattern-Mining based Cryptanalysis Attack

We now discuss the ideas behind our attack method, as we illustrate in Fig. 2.
In Sects. 3.1 and 3.2 we then describe the two main phases of our method in
detail, and analyze their complexities. For notation we use bold letters for BFs,
sets and lists (with upper-case bold letters for sets/lists of BFs/sets/lists) and
normal type letters for integers and strings. Lists are shown with square and sets
with curly brackets, where lists have an order while sets do not.

Previous attack methods exploit the bit patterns in and between BFs that
occur frequently in an encoded BF database. Our new method is the first to
exploit the co-occurrence between BF bit positions without requiring frequent
BFs. As with existing attacks on BFs for PPRL, we assume an attacker has access
to an encoded BF database, B, where it is unknown which plain-text value(s) are
encoded in a BF; and a plain-text database, V, that contains values from one or
several attributes. An attacker can guess which attributes are encoded in B based
on the distribution of the number of 1-bits in BFs in B [18]. However, unlike
with other attacks [10,11,12,13,15], the attacker does not require any information
used in the BF encoding, such as the number and type of hash functions.

In the first phase of our attack (Sect. 3.1), we identify sets of frequently co-
occurring bit positions (columns) in B that can encode q-grams that are frequent
in V. In the second phase (Sect. 3.2) we then re-identify possible plain-text values
v ∈ V that can be encoded in a BF b ∈ B based on these identified frequent
q-grams. Our attack exploits the way BFs are constructed as follows:

Proposition 1 Assuming a q-gram q occurs in nq < n records in a plain-text
database V that contains n = |V| records, and k ≥ 1 independent hash functions
are used to encode q-grams from V into the encoded database B of n BFs, i.e.
|V| = |B|. Then, (i) each BF bit position that can encode q must contain a 1-bit
in at least nq BFs in B, and (ii) if k > 1 then up to k bit positions must contain
a 1-bit in the same subset of BFs Bq ⊆ B, with nq = |Bq|, that encode q.



Proof. For (i), based on the BF construction principle [2,17], if a BF contains
a 0-bit in a bit position p where any of the k hash functions have mapped a q-
gram q into, then this BF cannot encode q. Formally, ∃ hj , 1 ≤ j ≤ k : (hj(q) =
p)∧(b[p] = 0)⇒ b cannot encode q. For (ii), given two distinct BF bit positions,
px and py (with 1 ≤ px, py ≤ lb and px 6= py), for a given BF b, if b[px] 6= b[py]
then b cannot encode a q-gram q because ∀hi, hj , 1 ≤ i ≤ k, 1 ≤ j ≤ k, i 6= j :
(hi(q) = px ∧ hj(q) = py)⇒ (b[px] = 1) ∧ (b[py] = 1).

Because of possible collisions of the k hash functions used to map q-grams into
BFs [14], potentially less than k bit positions will encode a certain q-gram, and
thus less than k bit positions might be co-occurring frequently. We can calculate
the probability of this to happen using the birthday paradox [14], which, for
example for the commonly used BF settings lb = 1, 000 and k = 30 [18], leads to
a probability of 0.64 of no collision for a single q-gram, and a probability of less
than 0.07 of more than one collision. For k = 20 the probability of no collision
is 0.83 while for k = 10 it is 0.96. Our attack should therefore be able to clearly
identify frequently co-occurring bit positions that encode the same q-gram with
high accuracy, as we validate experimentally on a real data set in Sect. 4.

3.1 Identifying Co-occurring Bit Positions in Bloom Filters

The first phase of our attack, as detailed in Algo. 1, identifies the sets of co-
occurring bit positions (columns) in the BF database B that correspond to the
frequent q-grams in the plain-text database V.

The algorithm first converts B from its row storage (one BF per record) into
a column-wise format Bc of lb bit arrays each of length |B| to allow efficient
access to individual bit positions. Then, in line 3, the plain-text values v ∈ V
are converted into one set of q-grams per record, where Q is the list of q-gram
sets of all records in V. Various lists and sets are then initialized, as is the queue
Q in line 8 with the first partition that contains all BFs and all bit positions. A
partition is a subset of BFs (rows) and bit positions (columns) in B.

The main loop of the algorithm starts in line 9, where the largest partition
in the queue Q will be processed. In each iteration, we use a tuple containing
ci (the column filter of which bit positions in Bc to consider), ri (the row filter
of which BFs in Bc to consider), and mi and ni (the set of must and cannot
contain q-grams, respectively, that a q-gram set in Q must / cannot contain
in order to be considered in this iteration). The function GetTwoMostFre-
qQGrams() called in line 11 returns the two q-grams, q1 and q2, and their
respective frequencies, f1 and f2 (with f1 ≥ f2), that occur in most q-gram sets
in Q, conditional on only considering q-gram sets in Q that contain all q-grams
in mi and no q-gram from ni.

The percentage difference between f1 and f2 is then calculated as di in line
12, and only if di is at least the user provided minimum threshold d (i.e. q-gram
q1 occurs a certain times more often than q2) will the current partition i be
processed. This ensures q1 is clearly more frequent than q2 in the partition for
it to be assigned to the set of co-occurring bit positions fi as described next.



Algorithm 1: Identify frequent q-grams co-occurring with frequent bit positions – Phase 1
Input:
- B: List of Bloom filters (BFs) from the sensitive encoded database, one BF per record
- V: List of plain-text values from a public database, one string value per record
- lq : Length of sub-strings to extract from plain-text values
- d: Minimum percentage difference between two most frequent q-grams in a partition
- m: Minimum partition size (a subset of BFs and bit positions in B) as a number of BFs
Output:
- F: List of frequent q-grams and their identified sets of co-occurring BF bit positions

- A+, A−: Lists of must have and cannot have q-gram sets assigned to each BF in B

1: Bc = ConvColWise(B) // One bit array per BF bit position (column) for efficient access
2: lb = |Bc| // Number of BF bit positions (BF length)
3: Q = GenQGramSets(V, lq) // Convert plain-text values into q-gram sets, one set per record

4: F = [ ], A+ = [ ], A− = [ ] // Initialize lists to be generated
5: r = {b : 1 ≤ b ≤ |B|} // Initialize row partition filter (so all BFs are considered)
6: c = {p : 1 ≤ p ≤ lb} // Initialize column filter (so all BF bit positions are considered)
7: m = {}, n = {} // Initialize empty sets of must and cannot include q-grams
8: Q = [(|B|, c, r,m,n)] // Initialize queue with first partition (the full BF data set)
9: while |Q| > 0 do: // Main loop: As long as the queue is not empty
10: (psi, ci, ri,mi,ni) = Q.pop() // Start iteration i: Get first tuple from queue
11: q1, f1, q2, f2 = GetTwoMostFreqQGrams(Q,mi,ni) // Most frequent in partition
12: di = 2(f1 − f2)/(f1 + f2) · 100 // Percentage difference between two most frequent q-grams
13: if di ≥ d then: // Only continue if large enough percentage difference
14: si = |B| · (f1 + f2)/(2|V|) // Minimum support for frequent pattern-mining
15: fi = GetLongFreqCoOccurBitPos(Bc, si, ci, ri) // Run pattern-mining
16: if fi 6= ∅ then: // A set of frequent co-occurring bit positions was identified
17: F[q1] = fi // Assign bit positions to most frequent q-gram q1 (from line 11)
18: ci = ci \ fi // Remove identified bit positions so they are not considered anymore

19: r+i , r−i = UpdateRowFilter(fi, ri) // Update row filter based on bit positions in fi
20: ∀b ∈ r+ : A+[b] = A+[b] ∪ {q1} // Assign q1 to must have q-gram sets of BFs

21: ∀b ∈ r− : A−[b] = A−[b] ∪ {q1} // Assign q1 to cannot have q-gram sets of BFs

22: if |r+i | ≥ m then: // Partition containing q1 is large enough

23: Q.add((|r+i |, ci, r
+
i ,mi ∪ {q1},ni)) // New partition of BFs containing q1

24: if |r−i | ≥ m then: // Partition not containing q1 is large enough

25: Q.add((|r−i |, ci, r
−
i ,mi,ni ∪ {q1})) // New partition of BFs not containing q1

26: Q.sort() // Sort queue by partition size with largest first

27: return F, A+, A−

In line 14 the average frequency of q1 and q2 is converted into a support
count si of required 1-bits in Bc to be used for frequent pattern-mining. This is
based on Proposition 1, because any set of co-occurring bit positions in Bc that
potentially can encode q1 must have 1-bits in at least si common BFs (rows)
in Bc. The function GetLongFreqCoOccurBitPos() (line 15) employs the
Apriori [1] and FPmax [7] algorithms on the bit positions in Bc, where bit
positions correspond to items and sets of co-occurring bit positions to itemsets.
The aim of frequent pattern-mining is to find the longest set (likely of size k) of
co-occurring bit positions, fi, that have a 1-bit in at least si common BFs.

Because the length of the longest pattern is likely large (values of 15 ≤ k ≤ 30
have been used [6,17,18]), employing only the Apriori algorithm would generate
too many candidate bit position sets. On the other hand, running the FPmax
algorithm would generate a very large FPtree with a number of branches in the
order of O(|B|). To reduce the size of the tree generated by FPmax, we therefore
first run Apriori to find those bit positions that occur in frequent triplets (i.e.
frequent 3-itemsets) of co-occurring bit positions that have a 1-bit in at least
si common BFs. The FPmax algorithm is then run on only those bit positions,
and only the longest set of found frequent bit positions is returned in fi.



The parameters ci and ri are the column and row filters that select a subset
of BF bit positions (columns) and rows (BFs) from Bc to be considered in this
partition i (as described below). If a non-empty set of co-occurring bit positions
fi is returned, it is assigned in line 17 to the identified most frequent q-gram q1

of this partition, as we assume that the bit positions in fi must encode q1.
In line 18, we remove the identified bit positions fi from the set ci of positions

to be considered in the following iterations. In the function UpdateRowFil-
ter(), based on the current set ri of BFs that have been considered in this itera-
tion, we generate the two new subsets r+

i of BFs that do contain q1 (have 1-bits
in all positions in fi) and r−i of BFs that cannot contain q1, where r−i = ri \ r+

i .
We then add the frequent q-gram q1 to the sets of must have (line 20) and cannot
have (line 21) q-gram sets, A+ and A−, for all BFs in r+

i and r−i .
Finally, we generate two new partitions (if their size is at least the minimum

partition size, m), where in line 23 the new partition contains those BFs that
contain the frequent q-grams q1 (so q1 is added to the must contain q-gram set
mi) and in line 25 the new partition contains those BFs that do not contain q1

(and therefore q1 is added to the set ni of not contained q-grams). In line 26 we
sort the queue q such that the largest partition is first.

To estimate the complexity of Algo. 1, we assume n = |B| = |V| is the
number of BFs and plain-text values, respectively. The initialization steps and
function calls in lines 1, 3, 11 and 19 are of complexity O(n) as they require
linear scans over B or V. Assuming in each iteration of the main loop k bit
positions are assigned to a frequent q-gram in line 17, then the expected number
of iterations is O(lb/k). The complexities of the Apriori and FPMax algorithms
in line 15 are known to be linear in the number of transactions (in our case BFs)
and quadratic in the number of items (bit positions) [8] and therefore of O(l2bn).
In the worst case the FPmax tree has a height of lb and contains n branches.
The overall complexity of Algo. 1 is therefore O(l3bn/k).

3.2 Plain-text Value Re-identification

As detailed in Algo. 2, the second phase of our attack aims to re-identify plain-
text values from V that could have been encoded into BFs in B according to
the lists of must have and cannot have q-gram sets for BFs, A+ and A− (from
Algo. 1). The algorithm only considers plain-text values and BFs that contain
at least nm must have q-grams assigned to them, because considering a single
or only a few frequent q-grams would result in too many possible plain-text
values that could match a BF (for example, nearly 4, 000 surnames from our
experimental data set of 224, 061 records contain the q-gram ‘sm’).

The algorithm consists of three main steps, where in the first (lines 3 to 6)
we find all BFs from A+ that (according to phase 1 of our attack) contain at
least nm identified q-grams. We build an inverted index, IB where q-gram sets
qb are index keys, each with a list of BFs that contain qb (line 6). In the second
step (lines 7 to 10), the function GetLongQGramSetInVal() finds for each
value v ∈ V the longest q-gram set qv from IB . If a value v contains at least nm

identified q-grams then we add it to the inverted index list of qv in IV .



Algorithm 2: Re-identify plain-text values in Bloom filters – Phase 2
Input:
- V: List of plain-text values from a public database, one string value per record

- A+, A−: Lists of must have and cannot have q-gram sets assigned to each BF in B
- nm: Minimum number of identified q-grams in a BF from B
Output:
- R: List of re-identified plain-text values from V for BFs from B

1: IB = [ ], IV = [ ] // Initialize inverted indexes of BFs and plain-text values
2: R = [ ] // Initialize list of re-identified plain-text values to be generated

3: for b ∈ A+ do: // Step 1: Find all BFs in A+ with enough identified q-gram sets

4: qb = A+[b] // Get the set of must have q-grams for this BF
5: if |qb| ≥ nm then: // There are enough must have q-grams for this BF
6: IB [qb].add(b) // Add the BF identifier to the inverted index list of this q-gram set
7: for v ∈ V then: // Step 2: Find longest identified q-gram set for plain-text values
8: qv = GetLongQGramSetInVal(IB , v) // Get longest known q-gram set in value v
9: if |qv| ≥ nm then: // There are enough must have q-grams for this value
10: IV [qv ].add(v) // Add the value to the list of this q-gram set in the inverted index
11: for qb ∈ IB do: // Step 3: Assign identified values to BFs
12: if qb ∈ IV then: // Q-gram set occurs both in BFs and plain-text values
13: for b ∈ IB [qb] do: // All BFs that contain this q-gram tuple
14: for v ∈ IV [qb] do: // All plain-text values that contain this q-gram tuple

15: if ∀q ∈ A−[b] : q /∈ v then: // If the value does not contain any cannot have q-grams
16: R[b] = R[b] ∪ {v} // Add to set of re-identified values for BF identifier b
17: return R

In the final step (lines 11 to 16), we loop over all q-gram sets qb that have
both BFs from A+ and plain-text values from V. For each qb and each of its BF
identifiers b from IB , we find all possible corresponding values v from IV that
do not contain any cannot have q-grams for this BF according to A− (line 15).
All possible values v are added to the set R[b] of re-identified values for b.

The computational complexity of the first two steps of Algo. 2 is O(n) because
they loop over A+ and V, respectively. In the third step, we loop over the
identified q-gram tuples, and for each over its associated BFs and plain-text
values. The maximum number of unique q-gram tuples in the inverted indexes
IB and IV will be n, which would be the case where every value and every BF
would contain a different q-gram tuple. In this case, each list in IB and IV would
contain one BF identifier. The minimum number of q-gram tuples would be 1,
the case where all values and BFs contain the same q-gram tuple. In this case
the length of the corresponding list in IB and IV is n BF identifiers. Based on
this, the overall complexity of step 3 of Algo. 2 is O(n2).

4 Experiments and Results

We evaluated our attack method using real data from the North Carolina Voter
Registration (NCVR) database (http://dl.ncsbe.gov/data/). We used one
snapshot of NCVR from April 2014 as B and another snapshot from June 2014
as V. We extracted pairs of records that correspond to the same voter but had
name and/or address changes over time, resulting in two files of 222, 251 and
224, 061 records, respectively. Using the CLK approach [18] discussed in Sect. 2,
we encoded combinations of between two and four of the attributes first name,
last name, street address and city into BFs. For combinations of three and four
attributes, all plain-text values in V and bit patterns in B were unique.

http://dl.ncsbe.gov/data/
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Fig. 3. Precision and recall results for the re-identified frequent q-grams from Algo. 1
(see Sect. 3.1), with different numbers of hash functions k (top), and different minimum
partition sizes m and different q-gram frequency percentage differences d (bottom).

We used the following BF encoding settings: q=2, lb=1,000, double and ran-
dom hashing [18] as described in Sect. 2, and different values for k (top row in
Fig. 3). We calculate the optimal number, opt, of hash functions such that the av-
erage number of 1-bits in a BF is 50% to minimize the false positive rate [19]. In
Algo. 1 we set the values for the minimum percentage difference as d=[1.0, 5.0]
and the minimum partition size as m=[2,000, 10,000] (bottom row in Fig. 3);
and in Algo. 2 we set the minimum q-gram tuple size nm=3, as these values
provided good results in setup experiments.

We present the quality of the identified frequent q-grams from Algo. 1 as
the precision and recall of how many bit positions were correctly identified for
a q-gram in F averaged over all q-grams in F. For Algo. 2, we evaluated the
quality of re-identified values in R as the percentages of (1) exact matches of a
plain-text value with the true value encoded in a BF, (2) partial matches where
not all words matched (for example, first and last name matched but city was
different), and (3) wrong matches. We only considered BFs with 10 or less plain-
text values assigned to them in R, and we separately present averaged results
for 1-to-1 (|R[b]| = 1) and 1-to-many (1 < |R[b]| ≤ 10) re-identifications.

We compared our attack method with the recently proposed attack by Chris-
ten et al. [5] (the only other attack that does not require knowledge of the BF
encoding parameters) which aligns frequent BFs and plain-text values to allow
re-identification of the most frequent plain-text values. We implemented both at-
tack methods using Python 2.7 and ran experiments on a server with 64-bit Intel
Xeon 2.4 GHz CPUs, 128 GBytes of memory and running Ubuntu 14.04. The pro-
grams and data sets are available from: https://dmm.anu.edu.au/pprlattack.

Discussion: In Fig. 3 we show the results for the first phase of our attack
(Algo. 1). As can be seen, both precision and recall of the identified frequent q-
grams are very high, above 0.88, for all settings of parameters. This validates that
our attack can successfully identify bit positions of q-grams with high accuracy
even when no frequent BFs are available in an encoded database. Both precision
and recall decrease slightly as more attributes are encoded into BFs, which is
due to the increased number of unique encoded q-gram sets that make accurate
frequent pattern-mining more difficult. A smaller difference d between the two

https://dmm.anu.edu.au/pprlattack


Table 1. Re-identification percentages of exact (E), partial (P) and wrong (W) matches
of plain-text values from Algo. 2 (Sect. 3.2), averaged over the settings used in Fig. 3.

Two attributes Three attributes Four attributes
E P W E P W E P W

Christen 1-to-1 5.0 0 95.0 0 0 100 0 0 100
et al. [5] 1-to-many 6.0 0 94.0 0 0 100 0 0 100

Our 1-to-1 20.7 30.9 48.4 0.2 61.0 38.8 0.5 73.2 26.3
approach 1-to-many 27.5 46.5 26.0 0.4 83.5 16.1 0.5 87.9 11.6

most frequent q-grams lowers re-identification accuracy, because the chance of a
wrong frequent q-gram being identified is increased. The minimum partition size,
m, seems to have no strong effect upon the q-gram re-identification accuracy.

As Table 1 shows, the re-identification results for the second phase (Algo. 2)
of our attack has led to around 51% to 74% of 1-to-1 matches to be exact or
partially correct, which means in the majority of cases where only one plain-text
value v ∈ V was identified to match one BF b ∈ B, an attacker has information
that likely allows re-identification of the individual represented by v. If between
2 and 10 values v match a BF, then the over 74% of re-identifications are exact or
partially correct. The small values of exact matches for three and four attributes
is because less than 1, 800 of over 222, 200 (< 1%) combined values between the
two NCVR snapshots are exact matches. In future work, we will concentrate on
improving the accuracy and efficiency of this second phase of our approach.

As can also be seen from Table 1, the frequency based attack by Christen et
al. [5] is only able to correctly re-identify a very small percentage of values when
two attributes are encoded into BFs, because with three and four attributes no
frequency information is available that could be exploited by this attack.

Our experiments show that basic BFs, even when each BF in an encoded
database is unique, can successfully be attacked by identifying frequently co-
occurring BF bit positions. These results highlight the need for improved BF
encoding, as well as new PPRL encoding methods that do not exhibit the weak-
nesses of basic BFs that allow the re-identification of encoded values.

5 Conclusions and Future Work

We have presented a pattern-mining based attack method on BF encoding as
used for PPRL. Our attack can successfully re-identify encoded q-grams and
plain-text values even when all BFs in an encoded database are unique. Given
that BF based PPRL is now employed in real-world applications [3,16], it is vital
to study the limits of BF encoding. We believe our attack is important for PPRL
because it allows data custodians to understand security flaws in BF encodings
and ensure their encoded databases are not vulnerable to such attacks.

As future work we plan to improve the second phase of our attack by ana-
lyzing the differences in bit patterns between BFs to identify additional encoded
q-grams which will allow an improved re-identification of plain-text values. We



furthermore aim to formalize different attack scenarios for PPRL, and to conduct
extensive experiments across a variety of parameter settings (such as different
values of q, k, and lb) and different encoding methods, and using data sets from
a variety of domains to identify the limitations of our attack method. Finally,
we will also explore how BF hardening techniques, such as balancing and XOR-
folding [18], will influence the feasibility of our pattern-mining based attack.
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