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ABSTRACT
The daily number of confirmed cases of influenza throughout
Western Australia, at a particular point in space and time
is modelled nonparametrically by assuming that the obser-
vation is generated from a mixture of Poisson distributions
where the log of the expected value of each component in
the mixture has a priori a stationary Gaussian Process pri-
ors (GPP). The weights attached to the components in the
mixture are parameterised to depend upon factors which are
specific to a particular point in space and time, such as the
population density, the time of year, the current weather
conditions, the age distribution and human movement pat-
terns as well as the attributes of the virus. This mixture
model serves two purposes. First it seeks to identify the
spread of influenza at a point in space-time as belonging to
one of a finite but unknown number of possible influenza
propagation signatures. Second it addresses the issue that
the space-time covariance structure for influenza counts is
likely to be nonstationary, by attaching different weights
to the mixture components at different points in space and
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time. This allows the covariance to change across space-
time. In this first study we focus on the data collected by a
surveillance program run by Department of Health of West-
ern Australia. Predictive distributions of influenza counts
are obtained at a particular point in space and time, after
accounting for the certainty surrounding the possible mod-
els as well as the uncertainty surrounding the parameters
which prescribe these models. The multidimensional inte-
gration required to obtain these predictive distributions is
performed using reversible jump Markov chain Monte Carlo
(RJMCMC).

1. INTRODUCTION
The spatial and temporal spread of an infectious diseases
such as influenza are problems that readily lend itself to be
modeled using non-parametric Bayesian methods[1].

Epidemics of influenza occur every year are a considerable
cost to the community [2]. They tend to be seasonal, taking
place during the winter in temperate zones [3] while in trop-
ical regions the seasonality is less pronounced, and in some
locations, non-existent. [4].

The relative isolation of the Australian continent, the di-
versity of its climate and the large distances between major
urban centres provide a unique opportunity to study drivers
behind the spread of influenza. Important insights have been
gathered from simulation featuring air, surface transporta-
tion and human movement [5, 6, 7, 8, 3]. In developing a
model for the spread of influenza wish it to have two prop-
erties (a) It is intrepretable and parsimonious and (b) Is
flexible enough to give good estimates for a large range of
functions and capture complex features. Choosing a para-
metric model for example, a linear model - satisfies the first
requirement, but not the second, whereas a nonparametric
model such as a GPP satisfies both requirements.
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Figure 1: The number of confirmed cases determined by PathWest between 2007 and 2014.

2. DATA
The data was collected by a surveillance program run by De-
partment of Health of Western Australia[9]. Medical centres
distributed throughout Western Australia report on patients
exhibiting symptoms of an ‘Influenza like illness’. The date
of the patient reporting the symptoms and their postcode
of residence are recorded. A fraction of the reported cases
undergo laboratory tests performed by PathWest[10] to con-
firm whether the illness is influenza. Only confirmed cases
are included in this study and as such the method only sam-
ples a fraction of the total of the infected population at any
one time.

Figure 1 shows the number of confirmed cases collected by
the program between 2007 and 2014. The seasonal trend is
the most prominent feature of the histogram with the peaks
located around late August or early September each year.
The severity of the influenza season cannot be determined
from the height of peak alone. In figure 1 the highest peak
corresponds to with the emergence of a novel swine-origin
influenza A (H1N1) [11] which prompted more symptomatic
people to seek a medical diagnosis.

Figure 2 shows the spatial distribution of influenza weekly
counts a function of reported date for 2010. The left panel
shows the distribution of the latitude of the postcode of res-
idence of each case as a function of the reported date while
the right panel shows the distribution corresponding to the
longitude. The latitude and longitude associated with each
postcode corresponds to an average of the positions of all
the localities that share the postcode.

As expected, Figure 2, shows that the highest concentration
of cases is in and around Perth (-31.9,115.9). The figure also
shows that in additiona to spatial depency there is also a
temporal dependence. For example, the number of reported
cases in Albany (-35.0, 117.9), coincides with the peak in
Perth although it is ≃ 400 km south of the city while Kar-

ratha (-20.7,116.8), ≃ 1500 km north of Perth, also reports
a small number of cases in time with Perth.

An interesting feature found in Figures 1 and 2 is the number
of cases reported between the seasonal peaks. The number
of these ‘out of season’ cases is small but are persistently
distributed across the state and not just limited to ”humid-
rainy” [12]. To understand the drivers behind such subtle
features together with the main seasonal feature, the ulti-
mate goal of this study is to build a nonparametric model
that will include diverse data such as temperature, rela-
tive humidity, daylight hours, human movement and terrain.
Such a model would provide insight into the drivers behind
the temporal and spatial spread of influenza.

Our first step in our study is to outline the model and priors
associated with this study.

3. MODEL AND PRIORS

3.1 Model for Mixture Components
Let ytuivi , be the observed disease count at time t, latitude
ui and longitude vi, for t = 1, . . . , T , i = 1, . . . , n. We
assume that this observation is generated from a mixture of
a finite but unknown number of Poisson probability mass
functions (PMF), with mean λtuivi which is a function of
space and time. However for now, we limit our discussion to
a fixed point in time, t, and develop a model for the spatial
distribution of yyyt = (ytu1v1 , . . . , ytunvn), and in what follows
the subscript t will be dropped for ease of notation. The
extension to a time varying distribution is the subject of
future work.

For a fixed number of components in the mixture, r, each
component has a different mean spatial surface
λλλj = (λu1v1j , . . . , λunvnj), for j = 1, . . . , r where subscript
j denotes the component in the mixture. To place a prior
on these mean surfaces we assume that, ηηηj = log(λλλj) is a



Gaussian process (GP), with covariance structure defined
by the reproducing kernel for a thinplate smoothing spline
[13, 14]. The overall log of the mean surface is modelled
as a weighted average of these mixture components, where
the weights attached to the components are parameterized
to depend on space, as well as on other covariates, such
as population density, current weather conditions, human
movement patterns and virus type.

This parameterization has two purposes. First it allows the
prior on η to be a nonstationary GP. This nonstationarity
can arise because the covariance of η can change across space
or it can arise in response to changes in other variables such
as climate conditions. Second it allows for an overdispersed
model, so that at a particular point in space the variance of
the data need not equal the mean as must be the case if the
data arose from a single Poisson component.

Suppose there are P possible variables which may give rise
to nonstationarity, and that the values of these P covari-
ates at a point in space are contained in the vector zzzuv =
(1, z1uv, . . . , zPuv). For a fixed number of r components, the
PMF of y is

Pr(yuv=k|r, η̃ηη, zzzuv) =

r
∑

j=1

{

Pr(yuv=k|ηjuv, γuv=j, r)
×Pr(γuv=j|zzzuv)

}

(1)
where

Pr(yuv=k|ηjuv, γuv=j, r) =
exp(ηjuvk) exp(− exp(ηjuv)

k!
,

η̃ηηr = (ηηη1, . . . , ηηηr), and γuv is an indicator variable denoting
the component in the mixture to which the observation be-
longs. Note that although all parameters should be indexed
by r, to indicate that parameters will be of different dimen-
sion and take on different values for different values of r, we
have omitted this subscript for clarity.

3.2 Model for Mixing Weights
The mixing weights are modelled using a multinomial logis-
tic regression so that

Pr(γuv = j) =
exp(zuvδδδj)

∑r

l=1 exp(zuvδδδl)

for j = 1, . . . , r and δδδjr = (δ0jr, δ1jr, . . . , δPjr) are the re-
gression coefficients with δδδr set to 000 for identifiability.

3.3 The Likelihood
The likelihood function for the data for a fixed number of r
components is

Lr =

n
∏

i=1

r
∑

j=1

{

exp(ηjuiviyuivi) exp(− exp(ηjuivi))

yuivi !
Pr(γuivi=j)

}

We note that observations are only recorded if there is at
least one individual who has a confirmed case of influenza,
so that the likelihood we work with is

n
∏

i=1

r
∑

j=1

Pr(yuivi=k|yuivi>0, ηjuivi , γuivi=j, r) Pr(γuivi = j)

(2)

where

Pr(yuv=k|yuv>0, ηjuv, γuv=j) =
Pr(yuv=k|ηjuv, γuv=j)

1− exp(exp(ηjuv))

and Pr(yuv=k|ηjuv, γuv=j) is given by (1).

3.4 Model for Number of Mixture Components
We consider the number of components in the mixture r to
be a random variable. The PMF for yuv unconditional on
the number of components is,

Pr(yuv=k|ΘΘΘ, zzzuv) =

R
∑

r=1

Pr(yuv=k|r, ˜ηηηruv,∆r, zzzuv) Pr(r)

where ΘΘΘ = (θθθ1, . . . , θθθR), is the set of all parameters which
specify a mixture an unknown but finite number of com-
ponents with θθθr = ( ˜ηηηruv,∆r) and ∆r = (δδδ1r, . . . , δδδrr) for
r = 1, . . . , R. The quantity Pr(r) is the prior probability
that the mixture has r components.

The likelihood function now becomes

L =
R
∑

r=1

lr Pr(r)

and Lr is given by (2).

3.5 Priors
For a given number of components, r, we write the log mean
of the jth component, ηj , as

ηj(ui, vi) = α0j + α1jui + α2jvi + fj(ui, vi)

and place a Gaussian Process prior on fj , so that fj ∼
N(0, τ2

j Ω) where Ω is the covariance matrix corresponding
to a thinplate spline prior, the elements of which are given
in [13], pg 30. The parameter τ2 controls the tradeoff be-
tween the goodness of fit and smoothness. If τ2 = 0, then
η is linear in space, and as τ2 → ∞, η interpolates the
data. The prior for η is completed by specifying priors for
αααj = (α0j , α1j , α2j) and τ2. We assume that αααj ∼ N(0, cαI)
and τ2

j ∼ U [0, cτ ] for some large cα and cτ , for j = 1, . . . , r.

To place a prior on the parameters of the mixing functions,
∆r, we followed [15] assume that δδδj ∼ N(0, cδZ

′Z−1).

We consider two priors for the number of components in the
mixture. The first is Pr(r = k) = 1/R for k = 1, . . . , R and
the second is a truncated Poisson with upper limit R and
mean (µr) = 2.

3.6 Predictive Distribution
The predictive distribution of the number of counts, y∗ at
location (u∗, v∗) given the data is

Pr(y∗

u,v = k|yyy) =

R
∑

r=1

∫

Pr(yu,v = k|yyy, r, θθθr)p(θθθr|r, yyy)dθθθr Pr(r|yyy)

and we use reversible jumpMarkov chain Monte Carlo (RJM-
CMC) to perform the required multidimensional integration.

The sampling scheme is broken into two steps; a between
model move where the number of components potentially
changes and a within model move where the parameters for
a model of a fixed number of r components, θθθr are updated



1. Between Model Move

This is the subject of future work, but the aim is to
follow [16] as described below. Let the value of the
current number of components in the chain be denoted
by rc, and value of the parameters which prescribe a
model with rc components be denoted by θθθcrc . We
propose to move the chain from (rc, θθθcrc) to (rp, θθθprp),
by

by drawing (rp, θθθprp) from a proposal density q(rp, θθθprp |r
c, θθθcrc)

and accepting this draw with probability

α = min

{

1,
p(rp, θθθprp |xxx)× q(rc, θθθcrc |r

p, θθθprp)

p(rc, θθθcrc |xxx)× q(rp, θθθprp |r
c, θθθcrc)

}

,

where p(·) denotes a target density, which is the prod-
uct of an approximate likelihood times prior densities.
The proposal density q(rp, θθθprp |r

c, θθθcrc).

q(rp, θθθprp |r
c, θθθcrc) = q(rp|rc)× q(θθθprp |r

p, rc, θθθcrc)

= q(rp|rc)× q(δδδprp , τττ
2p
rp , ηηη

p
rp |r

p, rc, θθθcrc)

= q(rp|rc)× q(δδδprp |r
p, rc, θθθcrc)

× q(τττ2p
rp |δδδ

p
rp , r

p, rc, θθθcrc)

× q(ηηηp
rp |τττ

2p
rp , δδδ

p
rp , r

p, rc, θθθcrc).

Thus, (rp, θθθprp) is drawn by first drawing rp, followed
by δδδprp , τττ

2p
rp and finally ηηηp

rp .

2. Within Model Move

For this type of move, r is fixed, and so the notation in-
dicating the dependence on the number of components
is dropped. Suppose the chain is at η̃ηηk = (ηηηk

1 , . . . , ηηη
k
r ),

γγγk = (γk
u1,v1 , . . . , γ

k
un,vn), τττ2k = (τ2k

1 , . . . , τ2k
r ), and

δδδk. We move the chain to η̃ηηk+1, γγγk+1, τττ2(k+1), and
∆∆∆k+1, via a kernel which consists of four parts;

(a) Drawing η̃ηηk+1.

For j = 1, . . . , r a value of ηηηp
j is proposed from

q(ηηηj |γγγ
k, τ2k

j ) where q is a Gaussian distribution
with mean η̂ηηj and covariance Σj where

η̂ηηj = argmax
ηηη

j

l(ηηηj)

with

l(ηηηj) =
n
∑

i∈Aj

(yiηij − exp(ηij))− 1/2ηηη′D−1ηηη

and Aj is the set of integers, i, for which γuivi =
j, for i = 1, . . . , n, and D the prior variance of

ηηηj . The covariance matrix, Σj , is equal to
∂2l(ηηη

j
)

∂ηηη
j
2

evaluated at η̂ηηj . Then with probability

α = min

{

1,
p(ηηηp

j |γγγ
c, τττ2c)× q(ηηηc

j |γγγ
c, τττ2c)

p(ηηηc
j |γγγ

c, τττ2c)× q(ηηηp
j |γγγ

c, τττ2c)

}

,

η̃ηηk+1 = η̃ηηp otherwise η̃ηηk+1 = η̃ηηk

(b) Drawing τττ2(k+1)

Conditional on ηηηk+1
j , τ

(k+1)
j is drawn from an in-

verse gamma distribution and accepted with prob-
ability 1.

(c) Drawing γγγk+1

Conditional on η̃ηηk+1, and ∆∆∆k we compute the

probability that observation yi is generated from
component j, which is given by

Pr(γi=j|yi,∆∆∆, η̃ηη) =

=
Pr(yi|γi=j, ηηηj) Pr(γi=j|∆∆∆)

∑r
k=1 Pr(yi|γi=k, ηηηk) Pr(γi=k|∆∆∆)

= πij

and γk+1
i is drawn from a multinomial distribu-

tion with probabilities πππi = (πi1, . . . , πir) for i =
1, . . . , n.

(d) Drawing ∆∆∆k+1

Let zzzi be an r × 1 indicator vector with zji = 1
if γi = j and zji = 0 otherwise, for j = 1, . . . , r.
A value of ∆∆∆p is proposed from q(∆∆∆|γγγk+1) where

q is a Gaussian distribution with mean ∆̂∆∆ and
covariance Σ where

∆̂∆∆ = argmax
∆∆∆

l(∆∆∆)

with

l(∆∆∆) =
n
∑

i=1

r
∑

j=1

zij log(πij)−
1

2cδ

r
∑

j=1

δδδ′jδδδj .

The covariance matrix Σ is ∂2l(∆∆∆)

∂∆∆∆2 evaluated at

∆̂∆∆. Then with probability

α = min

{

1,
p(∆∆∆p|γγγ)× q(∆∆∆k|γγγ)

p(∆∆∆k|γγγ)× q(∆∆∆p|γγγ)

}

,

∆∆∆k+1 = ∆∆∆p otherwise ∆∆∆k+1 = ∆∆∆k.

4. RESULTS AND DISCUSSION
We first illustrate the method and evaluate its performance
on simulated data. To study the frequentist property of our
technique we will generate 50 realizations from the model
given by (1), with n = 1600, r = 1, 2, λi1 = 15+8 sin(6πui)×
sin(6πvi), λi2 = 111n,

Pr(γi = 2) =
exp(17ui + 17vi − 24)

1 + exp(17ui + 17vi − 24)
= πi

. For each realization we will compute the deviance measure

dr =
n
∑

i=1

(log(λi./λ̂
r
i ) + (λr

i − λ̂),

where λi, is the true mean function and equals λi1(1− π) +

λi2π and λ̂r
i is the posterior mean function for a mixture of

r components, for r = 1, 2. Initial results suggest that there
is a considerable reduction in deviance in using a mixture of
two GPP. The full results will be presented in a later version
of this paper.

Figure 3 illustrates the method on a single simulated ex-
ample. Panel (a) is a plot of the function with the data,
panels (b) and c are plots of the estimated posterior mean
surface for a one and two component respectively. Figure 3
shows that an estimate based on a mixture of two compo-
nents clearly outperforms the single mixture estimate. The
mixture of two component does a better job of capturing the
peak in the mean function while remaining smooth.
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Figure 2: The distribution of flu cases as a function of latitude vs time (left) and longitude vs time (right).
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Figure 3: Illustration of the simulation example. Panel (a) shows the true 2d function as a surface and the data points
obtained from the function. Panels (b) and (c) are plots of the estimated posterior mean surface obtained for a one and two
component respectively.

To motivate the application of the method to disease map-
ping we provide preliminary analysis to demonstrate that
influenza counts across WA exhibit very local structure. To
do this we analyse influenza count data in four subsets of in-
creasing size. The first subset are those counts correspond-
ing to patients who reside in a postcode within 100km of
the CBD in Perth; the second and third subsets correspond
to those patients who live within 500km and 1000km from
the CBD respectively. The fourth subsets is the data for the
entire state of WA.

The model for the data is a single GPP with the reproducing
kernel given by a thinplate smoothing spline prior. The data
and the estimates of the posterior means for each of these
four subsets are given in the figures

• distance < 100 km. The data is shown in figure 4a
and posterior mean in figure 4c.

• distance < 500 km The data is shown in figure 4b and
posterior mean in figure 4d.

• distance < 1000 km The data is shown in figure 5a

and posterior mean in figure 5c.

• No selection. The data is shown in figure 5b and pos-
terior mean in figure 5d.

These figures show how sensitive modelling of influenza data
require a method which can detect highly localized struc-
ture. In figure 4c one can clearly see the distribution of
cases, north and south of the Perth and this is reflected
in the contours obtained from the model in figure 4c. As
the area associated with the data increases, these two peak
merge into one dominant peak, with other main sources of
cases included in the model.

For example in figure 5c small peaks correspond to Gerald-
ton (-28.74,114.62) and Kalgoorlie (-30.75,121.47) and in fig-
ure 5d, which includes the data from the whole state, peaks
corresponds with the area of Broome (-17.96,122.24) and
Karratha (-20.74,116.85). The limitation of patients just
reporting their postcode of residence becomes apparent in
sparsely populated areas such as the north of Western Aus-
tralia. For example, there are 8 localities in Broome that
share the same postcode of 6725. This results in any spatial



structure that may have existed being artificially erased.

The results presented in this paper only include a small pro-
portion of the possible data available for such study. It is
expected that future results will include a greater amount
of data that includes all the Australian states. The results
show via simulation that the a mixture of GPP provides a
better model for data which exhibits localized structure and
that modelling disease counts needs a technique that is ca-
pable to do this. It is the subject of future work to apply the
mixture model disease data across, where the mixing com-
ponents are a function of space and other variables such as
demographic data and climate data, to determine whether
by employing a mixture of them will enable the model to be
sensitive to both, small and large spatial structure. The last
step in the study will be to develop the time component of
the model.
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Figure 4: The spatial distribution of the number of cases between June and mid October for the year 2009 shown within a
radius of 100 km (a) and 500 (b). The origin of the radius is the location of postcode 6000 (-31.92,115.91) which corresponds
to the centre of Perth. Figures (c) and (d) show the contour of the model obtained using the data shown in figure (a) and (b)
respectively.
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Figure 5: The spatial distribution of the number of cases between June and mid October for the year 2009 shown within a
radius of 1000 km (a) and no restriction (b). The origin of the radius is the location of postcode 6000 (-31.92,115.91) which
corresponds to the centre of Perth. Figures (c) and (d) show the contour of the model obtained using the data shown in figure
(a) and (b) respectively.


