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ABSTRACT

Given a population represented as a graph (e.g., a social network
where the nodes are individuals and the links indicate friendships),
can we minimize the spread of an entity (such as a meme or a virus)
while maintaining the population’s community structure (i.e., dense
connections among nodes within a community but sparse connec-
tions between nodes in different communities)? At first glance,
these two objectives seem at odds with each other. To minimize dis-
semination, nodes or links in the graph are often deleted to reduce
the population’s connectivity. These deletions can (and often do)
destroy the community structure present in the population, which
is an important construction in society. We introduce the strategy of
rewiring links to achieve both objectives. Examples of rewiring in
real life are prevalent, such as purchasing products from a new farm
since the local farm has signs of mad-cow disease; getting informa-
tion from a new source after a disaster since your usual source is
not longer available, etc. This paper has three parts. First, we for-
mally introduce the problem of minimizing dissemination on a pop-
ulation (represented as a graph) while maintaining its community
structure by rewiring a set of links. Second, we propose two effec-
tive and efficient algorithms: CRlink (short for Community Relink)
and constrCRIink (short for Constraint Community Relink). Third,
we present the results of extensive experiments on different graphs
to show that our algorithms perform well in both minimizing dis-
semination and maintaining community structure. When compared
with the most effective algorithm for minimizing spread on a graph
through link deletions (namely, NetMelt"), constrCRlink preserves
(on average) 98.6% of NetMelt*’s efficacy in minimizing dissemi-
nation and only changes 4.5% of the original community structure
while NetMelt* changes 13.6% of the original community struc-
ture.
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1. INTRODUCTION

We address the following problem: given a population repre-
sented as a graph G,! can the dissemination of an entity (such
as a meme or a virus) be minimized on G while maintaining G’s
community structure (where nodes within a community have dense
connectivity amongst each other, but they have sparse connectivity
with others outside their community)? The problem of controlling
an entity’s spread on a graph has been studied extensively [8, 10,
3, 18, 21, 14, 20], but (to the best of our knowledge) no one has
investigated this problem under the constraint of maintaining the
graph’s community structure as much as possible. Preserving com-
munities in a graph is an important problem in many real-world
applications—e.g., individuals trust members of their communities
more than non-members because their interactions are more em-
bedded (due to higher link density between members of a commu-
nity than to members outside the community) [2].

The epidemic tipping point (i.e., whether a dissemination will
die out or not) depends on two factors: (a) the entity’s strength
and (b) the graph’s path capacity [3, 18]. We assume that we
cannot modify the entity’s strength and focus on manipulating the
graph’s path capacity. However, instead of deleting nodes or links
(which affect the graph’s community structure), we investigate al-
gorithms that rewire links in order to minimize dissemination and
minimize change to the community structure of the original (i.e.,
unperturbed) graph. We quantify minimizing dissemination by the
drop in the largest (in module) eigenvalue of the adjacency matrix;
and measure the amount of change to the community structure of
the original (i.e., unperturbed) graph by the variation of informa-
tion, an entropy-based distance function. As we will demonstrate,
it is impossible to satisfy both of these minimizations at the same
time via the edge rewire operation. Thus, we focus on solving a
realizable problem—namely, how can we efficiently rewire a set of
K edges that effectively contain dissemination and maintain com-
munity structure.

To solve the aforementioned problem, we present the CRlink al-
gorithm (short for Community Relink), which rewires edges in the
graph that lead to the largest drop in the leading eigenvalue of the
adjacency matrix by choosing the relink-to edge with the smallest
eigenscore within a given community. Furthermore, we present the
constrCRlink algorithm (short for Constraint Community Relink),
which is based on CRlink but the rewiring of the edges is based

'"We use the following terms interchangeably in this paper: graph
and network, vertex and node, edge and link.



on node-degree constraints. Experiments on a range of different
graphs demonstrate the efficiency and effectiveness of CRlink and
constrCRlink.

The main contributions of the paper are summarized as follows:

e We introduce the problem of minimizing dissemination while
preserving community structure on graphs.

e We propose two efficient and effective algorithms for the
aforementioned problem—namely, CRlink and constrCRlink.

e Experimental results on various real graphs show that our
CRlink and constrCRlink algorithms efficaciously solve in
the aforementioned problem.

The rest of paper is organized as follows. Section 2 formally
defines the edge rewire manipulation and the new problem of min-
imizing dissemination on a graph while maintaining the graph’s
community structure. Section 3 proposes algorithms to solve the
problem. Section 4 presents our experiments. Section 5 reviews
related works. The paper concludes in Section 6.

2. PROBLEM DEFINITION

Table 1 lists the symbols used throughout the paper. We rep-
resent an undirected unweighted graph by its adjacency matrix,
which is denoted by bold upper-case letter A. Bold lower-case
letter ¢ stands for the community-assignment vector of nodes. The
greek letters ® and WU are the sets of deleted and added edges in
the rewiring process, respectively. The leading eigenvalue of A is
A. The bold lower-case letters u and v denote the left and right
eigenvectors corresponding to A, respectively.

Symbol | Definition and Description
A the adjacency matrix of a graph
A(i,7) | the (i, 7)™ element of A
c community-assignment vector of nodes
c(%) community assignment of node ¢
i set of deleted edges in rewiring process
v set of added edges in rewiring process
A the leading eigenvalue of A
u, v the left eigenvector and right eigenvector
corresponding to A
the number of nodes in graph
m the number of edges in graph
K the edge budget (i.e., the number of edge manipulations)

Table 1: Symbols used in the paper.

We define rewiring of an edge as a two-step operation: (1) delete
an existing edge e:(src, end) and (2) add a formally nonexistent
edge, either é:(src, des) or é:(end, des), where des is a node in
the graph. All non-existing edges with one of src or end nodes as
endpoints are suitable candidates for edge é. Recall that we are op-
erating on undirected unweighted graphs. Figure 1 depicts the edge
rewiring operation. Formally, we define edge rewiring as follows:

DEFINITION 1. (Edge Rewiring). Given an edge e:(src, end),
an edge rewiring on e deletes e and adds a new edge é where € is
either (src, des) or {end, des).

Given the above definition, it is useful to further define two types
of edges and three kinds of nodes that participate in the edge rewiring
operation. They are as follows: The rewire-from edge (de-
noted by rf) is the deleted edge in the rewiring operation, as in
edge e:(src,end) in Figure 1. The rewire-to edge (denoted
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Figure 1: Example of an edge relink. Edge (src, end) is deleted
and node srcis relinked to node des. The edge between src and
des is a new edge in the graph.

by rt) is the newly added edge in the rewiring operation, as in
edge é:(src, des) in Figure 1. The source node (denoted by src)
is the node which is an endpoint in both the rf and rt edges, as
in the node src in Figure 1. The end node (denoted by end) is the
rewire-fromnode, which appears only in the r f edge, as in the
node end in Figure 1. The destination node (denoted by des) is
the rewire—to node, which appears only in the rt edge, as in
the node des in Figure 1.

In order to design an algorithm for minimizing dissemination
while preserving community structure, we need to quantify how
we measure the decrease in dissemination and the preservation of
community structure. For the former, Chakrabarti et al. [3] and
Prakash er al. [18] show that the dissemination process disappears
in a graph if the strength of the entity (measured by the ratio of its
birth rate « over its death rate 3) is less than one over the lead-
ing eigenvalue A of A—i.e., o/ < 1/A. In other words, A is the
only graph-based parameter that determines the tipping point of the
dissemination process. The larger the A, the smaller the dissemina-
tion threshold for the entity to spread out. Thus, an ideal strategy
for minimizing dissemination on a graph is to minimize the lead-
ing eigenvalue \; or alternatively maximize the drop in the leading
eigenvalue \. Tong et al. [21] estimate the effects of edge removal
on \ via an eigenscore function. Specifically, they define the eigen-
score of an edge e: (i, j) as the product of the ¢-th and j-th elements
of the left and right eigenvectors corresponding to A\. We use the
eigenscore function to select the rf-type edges to be deleted and
rt-type edges to be added. An rf-type edge has the largest eigen-
score in the graph. An rt-type edge has the smallest eigenscore in
the graph. Together these two identify the edge whose rewiring will
result in the largest decrease in A. In addition, we need a way of
quantifying how much the community structure of a graph changes
as its edges are manipulated. Among the many ways of measuring
this quantity, we select the variation of information V(c, &) [9].
V(c, &) is a symmetric entropy-based distance function. It mea-
sures the “robustness” of a community structure to perturbations in
the adjacency matrix. The formal definition of V' (c, &) is given in
Section 4.1.2. The value of % is between O (no change) to 1
(complete change), inclusive.

Finding the set of K edges whose deletion maximizes the drop
in A is an NP-hard problem [21]. The most effective approximate
edge-deletion algorithm to maximize the drop in A recomputes the
eigenscores of edges after each edge deletion. This approximate
algorithm, called NetMelt", is an improved version of NetMelt [21].
Edge rewiring, is a combination of edge deletion and edge addition.
Under the same budget K, the best case for edge rewiring is to
choose K edges of type rf to delete as in NetMelt*, which leads
to maximizing the drop in A\. However, with edge rewiring, there
are also K edges of type rt that need to be added. These edge
additions lead to an increase in A. Hence, the drop in A under edge



rewiring is always less than the drop under edge deletion. That is, it
is impossible to maximize the drop in A with edge relinkage, whose
edge additions are required to minimize V'(c, €).

With above analysis, we look for edges that produce a large drop
in the A and a small value of V'(c, €). Thus, the problem is formally
defined as follows:

PROBLEM 1. Given a graph A and an integer (budget) K,
output a set of K, edges of type rf to be deleted from A and a
set of K, new edges of type rt to be added to A, which produce
a large drop in \ and a small value of V (c,€). The budget K is
equal to K4 and K, < Kg.

Note that there may be no associated rt-type edge added for
a given rf-type edge deleted (i.e., K, < Kg). In the following
section, we introduce two algorithms to solve Problem 1.

3. PROPOSED ALGORITHM

In this section, we propose two different strategies and corre-
sponding algorithms to solve Problem 1. In addition, we present an
analysis of the complexities of the proposed algorithms.

3.1 Proposed Algorithm: Community Relink
(CRlink)

To get the largest drop in A with edge rewiring (see Definition 1),
one can delete K4 edges of type rf with the highest eigenscores
and add K, previously non-existent edges of type rt with the low-
est eigenscores. We name this simple strategy GRlink (short for
Global Relink). Thus, GRlink repeatedly deletes the edge with the
highest eigenscore in the graph and adds the edge with the lowest
eigenscore from one of the endpoints of the deleted edge to any
node in the graph.

The motivation for edge rewiring (i.e., deletion of an existing
edge followed addition of a new edge) is to maintain the graph’s
community structure. The key issue is which previously non-existent
edges of type rt are suitable for addition. GRlink chooses the rt
edge with the smallest eigenscore in the whole graph. However,
from the community structure perspective, edge rewiring among
all nodes in the graph may completely change the community struc-
ture because it may decrease the connections among nodes within a
community while increasing the connections across communities,
which can lead to different outcomes for community assignments.
Thus, we implement edge rewiring within a community based on
the following considerations:

e Both endpoints of most rf edges are in the same community
(i.e., most rf edges are “non-bridges”). Figure 2 reports
the ratios of non-bridge edges in various networks.? In each
network, this ratio is above 80%.

e Edge rewiring in the same community is more effective for
maintaining community structure than edge rewiring through-
out the whole graph.

e In real applications, it is more realizable for an individual to
connect to another individual who is in the same community.

Algorithm 1 describes the Community Relink (CRlink) algorithm.
In each loop of CRlink, it first chooses the r £ edge with the highest
eigenscore to delete and then finds the suitable rt candidate edges
whose des node is in the same community with src node. Fi-
nally, it selects the best rt edge with the lowest eigenscore among
these candidates to add. In some loops of CRlink, there may be

2See Section 4.1.1 for a description of these networks.
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Figure 2: Non-bridge edge ratio of different graphs. Most of
the edges in the graphs are non-bridge edges with both end-
points in the same community. (See Section 4.1.1 for a descrip-
tion of the graphs.)

no associated rt edge for an rf edge due to the within commu-
nity constraint. Nonetheless, CRlink deletes the r £ edges in these
loops. Thus, K, < Kj in the CRlink algorithm. Note that newly
added edges in former steps can not be re-deleted in later steps, as
well as newly deleted edges can not be re-added. Thus in Step 6 of
Algorithm 1, e;; ¢ ¥ avoids the re-deletion of newly added edges.
Step 17 and 21 do not update the deleted (r£) edges in A, which
guarantees that newly deleted edges will not be re-added.

3.2 Proposed Algorithm: Constraint Commu-
nity Relink (constrCRlink)

CRlink rewires edges by deleting the edges of type rf with the
largest eigenscores and adding the within community edges of type
rt with the smallest eigenscores. Here, we investigate the choice
of the within community edge rt to add.

Some of the most popular community detection algorithms are
based on graph modularity [6]. Change in modularity influences
the community assignment of each node directly. So we need to fig-
ure out the key parameter of a node that correlates with modularity
change when edge rewiring happens in the community. Lemma 1
shows that the change in modularity is related only to the degree of
node des. Recall that des is one of the endpoints of the edge being
added that was not present before. The other endpoint is from the
deleted edge.

LEMMA 1. The change in modularity is only related to the node
degree of des when edge rewiring happens within the same commu-
nity.

PROOF. The definition of graph modularity is as follows [6]:

1 kik; . .
Q= 51 3 Alidl - 52 (i, eti)

2m <
gy

where k; is the degree of node ¢ and 6(c(¢), ¢(j)) is the community-
assignment indicator function of the two nodes 7 and 5. 6(c(7), c(5))
is 1 when c(¢) and c(j) are the same; and O otherwise. Let AQ—
and AQ ;+ represent the modularity change of deleting edge e: <2, 3)
and adding edge e: (%, 7) in the same community, respectively. Hence:

A kK- R N
2Q- = oAl - 2 et <)

N - kiks R -
8Q = 51 Al - 2 6(eli. o6

25 5(e(i), (7))



Algorithm 1 Community Relink (a.k.a. CRlink)

Input: Adjacency matrix A, budget K, community vector c;
Output: Ky deleted edges of type rf indexed by set ®, and a
corresponding K, added edges of type rt indexed by set ¥
(Ko < Kaq = K);
1: initialize ¢ and V¥ to the empty set;
2: fort =0,1,..., K do

3:  compute the leading eigenvalue \ of A;

4:  compute the corresponding eigenvectors: u and v;

5:  score(eij)=u(@)v(j) fori, j = 1,2,...,n;

6: find ege; = €; = argmaze, score(e;j), where e;; ¢ P
and e;; ¢ U,

7: add the edge ege; into ®;
8 fork=0,1,..,ndo .
9: if (i) == c(k)&&A[i, k] == 0 then

10: score(é;,) = u(i)v(k);

11: end if

12: if c(j) == c(k)&&A[7, k] == 0 then

13: score(é;,) = u(j)v(k);

14: end if

15:  end for

16: if &, Ué;, == ( then

17: €qda = null and do not update A

18: else

19: find é4qq = argmiméikuéjk)score(é;k U é;k),
where é;, U é;, ¢ U;

20: add the new edge €444 to V;

21: update added (rt) edges in A;

22:  endif

23: end for

The overall modularity change |AQ)] is:

R, — k5|

1
AQ| = — .
1AQ| 2m2m|7 7

where k; and k; are the degrees of the nodes 2 and j, which are
selected by eigenscore decomposition (see Section 2). Therefore,
AQ is correlated with the node degree (k;) of des. [

According to Lemma 1, we should consider the node degree of
des when choosing the rt edge to add. An intuitive way is to con-
strain the degree of des node in edge rewiring within community.
Adding an edge to a node with small degree impacts the commu-
nity structure more than adding an edge to a node with large degree.
With such consideration, we present the Constraint Community Re-
link (or constrCRlink) algorithm based on CRlink. In each iteration
of constrCRIink, it chooses the r £ edge with the highest eigenscore
to delete; and rewires one of the endpoints to the corresponding
lowest eigenscore rt edge with a small degree des node. Similar
to CRlink, K, < Kq4 in constrCRlink. We only need to change Step
9 and Step 12 in Algorithm 1 to get the algorithm for constrCRlink.

e Step 9: if c(i) == c(k) && A[i,k] == 0 && dyx < p
then ...

e Step 12: if c(j) == c(k) && A[j, k] == 0 && di, < p
then ...

p is a small value parameter for degree constraint and dj, denotes
the degree of node k. Note that Lemma 1 only considers the case
where both endpoints of the deleted edges are in the same commu-
nity. Thus, constrCRlink does not consider the special case where

the two endpoints are in different communities. This decision is
due to the following two reasons. First, as Figure 2 shows, most of
the edges in a given graph are non-bridge edges (i.e., with the two
endpoints in the same community). Thus, the case where the two
endpoints are in different communities has little influence and so
constrCRlink ignores it. Second, there are a few deleted edges with
two endpoints in different communities. This leads to a more stable
community structure since edges across communities are deleted
while edges within communities are added.

3.3 Algorithm Complexity Analysis

LEMMA 2. The time complexities of CRlink and constrCRlink
are O(K (m + n)). The space costs of CRlink and constrCRlink
are O(n?).

PROOF. In CRlink and constrCRlink, Steps 3 and 4 take O (m +
n) by Lanczos algorithm [13]. Steps 5 and 6 cost O(m). The loop
from Steps 8 to 15 takes O(n). Step 19 costs O(n). Over K itera-
tions, the algorithm takes O (K (m+n+m-+n+n)) time. Thus, the
time complexities of CRIink and constrCRlink are O(K (m + n).
In many real graphs, m ~ nlogn.

In terms of space, we first need O(m) to store the original graph
A. Tt costs O(1) and O(2n) to store the largest eigenvalue and its
associated eigenvectors, respectively. In Step 53, it costs O(m) to
store the eigenscores of all edges. Moreover, in the worst case, we
need an additional O((}) — m) to store the eigenscores of non-
existing edges. The storage of deleted edges and added edges take
O(K). Therefore, the total space cost of CRlink and constrCRIink
are O(m+142n+m+(3) —m+K) ~ O(m+n+n’+K).
Since n® > m > n > K, the total space cost of CRIlink and
constrCRlink is O(n?) in the worst case. [

4. EXPERIMENTS

This section is divided into three parts: experimental setup, eval-
uation results, and discussion.

4.1 Experimental Setup
4.1.1 Datasets

Table 2 lists the graphs used in our experiment. All of them
are transformed to undirected and unweighted graphs. We use the
following six different types of graphs to evaluate our algorithms:

e Facebook user-postings (FB): We use two graphs of this
type. Each node represents a Facebook user. An edge be-
tween two users means a “posting” event between them.

o Twitter re-tweet (TT): We use two graphs of this type. A
node is a Twitter acount. There is an edge between two ac-
counts if a re-tweet event happens between them.

e Yahoo! Instant Messenger (YIM): A node is a Yahoo! IM
user. An edge indicates a communication between two users.

e Oregon Autonomous System (OG): A node represents an
autonomous system. An edge is a connection inferred from
the Oregon route-views.

e Weibo re-tweet (Weibo): A node denotes a Sina-Weibo user.
There is an edge between two users if a re-tweet event hap-
pens between them.

Most of our datasets are available at https://snap.
stanford.edu/data/.



e Collaboration Network of ArXiv (CA): Nodes represent
scientists, edges represent collaborations (i.e., co-authoring

a paper).
Dataset # of # of # of
Nodes (n) | Edges (m) | Communities
FB-1 27,168 26,231 2,154
FB-2 29,557 29,497 1,865
TT-1 25,843 28,124 2,983
TT-2 39,546 45,149 3,920
YIM 50,576 79,219 2,867
oG 7,352 15,665 38
Weibo 34,866 37,849 4,786
CA 5,243 14,484 392

Table 2: Datasets used in our experiments. We use the Louvain
method [1] to find communities. The number of communities is
computed automatically by the Louvain method.

4.1.2  Evaluation Measures

We consider performances on both the decrease in the leading
eigenvalue A and the change in the community structure V (c, €).
Given the original graph A and the perturbed graph A, we have the
following evaluation measures:

e Drop in the leading eigenvalue: We define the percent drop
in the leading eigenvalue )\ as:

100 x (A — X)

AX% = \

where A is the leading eigenvalue of A. The higher the
A%, the better the performance.

e Change in the community structure: We use the variation
of information V (c, €) [9] between the community structures

of A and A since it has all the properties of a proper distance
measure. V (X, Y) is defined as:

V(X,Y) = HX|Y) + HY|X)

_ P(.Ii,y) P(I,y)

where H(X|Y) and H(Y'|X) are conditional entropies.

P(x,y) = nay/n, P(x) = ng/nand P(y) = ny/n, where
x and y are the community assignments in ¢ and &, respec-
tively. n.y is the number of nodes which belong to commu-
nity z in ¢ and community y in €. In addition, we normal-
ized V'(c, €) by 1/ log n since log n is the maximum value of
V(c, €&). The lower the V (c, &), the better the performance
(i.e., the more the original community structure is preserved).

To find communities, we use the Louvain method [1] due to its
good performance in both efficacy and efficiency. The choice of
community discovery algorithm is orthogonal to our work.

4.1.3 Comparison Methods

We compare the results of the following six methods:

1. GRlink: edge rewiring, rt edges selected from the whole
graph based on eigenscore computation.

2. CRlink: edge rewiring, rt edges chosen from within a com-
munity based on eigenscore computation.

3. constrCRIlink: edge rewiring, rt edges selected from within
a community based on eigenscore computation and degree
constraint p = 1.

4. NetMelt [21]: edge deletion, deleted edges selected based on
eigenscore computation.

5. NetMelt*: edge deletion, an improved version of NetMelt,
which re-computes the eigenscore after each edge deletion.

6. RandMelt: edge deletion, deleted edges are chosen randomly.*

4.2 Experimental Results

4.2.1 Performance w.r.t. A\% and V (c, &)

First, we evaluate the effectiveness of the different methods, in
terms of AA% and V (c, €), across various edge budgets K. Fig-
ure 3 shows that constrCRIink performs well in terms of AA% (it
is close to NetMelt*, which solely optimizes for AA%) and has
the smallest V'(c, &). CRlink also has good performances in both
AX% and V (c,&). So, our algorithms not only have strong im-
pact in containing dissemination but also maintaining community
structure. In addition, as discussed in Section 3, GRlink has a large
value in V (c, &€)—i.e., it performs badly in preserving community
structure.

Table 3 lists the AA% and V' (c, &) results of different methods
with a fixed budget P = 100 X % ~ 8% across various graphs.
The take-away points from this table are the following:

e On average, constrCRIink preserves 98.6% of NetMelt*’s ef-
ficacy in term of AX%.

e On average, constrCRIink changes the community structure
by 4.5%, while NetMelt* changes it by 13.6%. In other
words, NetMelt* changes the graph’s community structure
on average about 3 times more than constrCRlink.

e Asexpected, V(c, &) of GRIink is the largest among all meth-
ods because it is agnostic of a node’s community structure
when it performs edge rewiring.

There are two seemingly counter-intuitive phenomena in Fig-
ure 3 and Table 3. One is that CRlink seems to not be as good
as constrCRlink in A\%, even though CRlink has more choices
for adding edges. These two methods use different strategies to
manipulate the network structure, which result in very different
eigenscores. The smallest eigenscore of an edge after constrCRlink
can be less than the smallest eigenscore of an edge after CRlink.
The same argument holds when contrasting GRlink with constrCR-
link. The other counter-intuitive phenomenon is that when more
edges are modified, V'(c, €) of most methods increase as expected,
but those of CRlink and constrCRlink keep decreasing. The rea-
son for this is because edge-deletion methods and GRlink tend to
change the community structure more as the edge budget increases,
which lead to an increase in the community variation of informa-
tion. However, CRlink and constrCRlink rewire edges within com-
munities. This (often) makes the community structure more stable
as the edge budget increases, which leads to a decrease in the com-
munity variation of information.

“For RandMelt, we run the experiment 100 times and report the
average results.
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Figure 3: (Best viewed in color.) A\% and V (c, &) vs. budget K across different graphs. constrCRlink’s A\% closely shadows that
of NetMelt* across various graphs (the first and second rows); but its V' (c, &) is the smallest (the third and fourth rows). (Note: The

x-axes are in different scales due to different graph sizes.)

Dataset | EvaluationMetric | RandMelt | NetMelt | NetMelt™ | GRlink | CRlink | constrCRlink

FB-1 A% 2.5228 42.118 64.842 63.024 63.132 63.324
Ve, &) 0.1239 0.1319 0.1511 0.2682 0.0510 0.0483

FB-2 A% 47317 28.568 60.312 58.521 58.798 58.902
Ve, &) 0.1530 0.1390 0.1741 0.2974 0.0587 0.05525

TT.1 A% 17.803 43.277 68.820 66.946 67.257 67.592
V(c, &) 0.1648 0.1519 0.1780 0.2694 0.0461 0.0463

TT.2 A% 10.161 42.744 75.985 74.396 74.428 74.549
V(c, &) 0.2073 0.1856 0.2242 0.3425 0.0538 0.0515

YIM A% 14.022 27.282 68.413 66.765 57914 67.636
V(c,@&) 0.1148 0.0612 0.0649 0.2288 0.0454 0.0452

0G A% 12.001 32.288 39.227 38.979 38.875 38.476
Ve, &) 0.1609 0.1649 0.1370 0.2701 0.0582 0.0544

Weibo A% 12.489 25.037 43.639 43.193 43.382 43.417
Ve, &) 0.1446 0.1056 0.1091 0.2659 0.0422 0.0381

CA A% 8.3240 16.429 47.832 47.031 35.081 47.808
V(c,¢€) 0.1114 0.0541 0.0518 0.1033 0.0274 0.0274

Table 3: Results of AA% and V (c, &) with a fixed budget P = 100 x £ ~ 8%. constrCRlink preserves on average 98.6% of NetMelt"’s
efficacy in A\%; and it performs much better in V' (c, &). On average, constrCRlink changes the community structure by 4.5%, while

NetMelt* change it by

13.6%.
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Figure 4: (Best viewed in color.) GCC visualizations of the original/unperturbed graph and the perturbed graphs. (1), (2), (3),
(4), (5) and (6) represent the GCCs of the original FB-1 graph, the graph after GRlink, the graph after CRlink, the graph after
constrCRlink, the graph after NetMelt, and the graph after NetMelt*, respectively. GCCs of the graph after CRlink (3) and the graph
after constrCRIink (4) are the most similar to the original FB-1 graph’s GCC (1).

4.2.2  Greatest Community Component Visualization

To clearly show the differences in the community structure change
across different methods, we extract the Greatest Community Com-
ponent (GCC, which is the community with the maximum number
of nodes among all communities) of the original FB-1 graph and the
perturbed FB-1 graphs. For better visualization, we use K = 1300
(i.e., P = 5%). Figure 4 shows that after applying CRlink and
constrCRlink, the GCCs of their (respective) perturbed graphs are
similar to the original GCC. After applying GRlink and NetMelt",
the GCCs of their (respective) perturbed graphs are different from
the original GCC (with many nodes having been assigned to other
communities). Therefore, from the visualization perspective, CR-
link and constrCRlink perform well in maintaining the community
structure.

4.2.3  Simulation of Virus Propagation

We evaluate the effectiveness of our algorithms in terms of min-
imizing the infected population. Specifically, we simulate the SIS
(Susceptible-Infected-Susceptible) model [17] of virus propagation.
Due to space limitation, we only report the results on the FB-1
graph. The results on the other graphs are similar. In this experi-
ment, we set the budget K to 2000 and the virus strength s to 0.25.
Figure 5 reports the relationship between the rate of infected popu-
lation and the time step. All results are average values of 100 runs.
Obviously, the lower the rate, the better the performance in mini-
mizing dissemination. It can be seen that the infected rate of constr-
CRlink is close to NetMelr*’s infected rate. This means that constr-
CRlink, as desired, has similar performance to NetMelt" in dissemi-
nation minimization. As shown in the previous sections, constrCR-
link maintains the community structure of the original/unperturbed
graph while NetMelr* does not.

4.3 Analysis and Discussion

We further analyze and discuss the different performances of our
methods. For brevity, we only show the analysis on the FB graphs.
The other graphs have similar results.

4.3.1 The impact of parameter p in constrCRlink

We investigate the impact of the node-degree constraint p in con-
strCRlink. As discussed in Section 3.2, rewiring different edges
impacts the community structure differently. Thus, the parameter p
plays an important role in constrCRlink—namely, it controls which
des node the constrC Rlink method chooses. Figure 6 illustrates
(on average) the relationship between p and V(c,€). It can be
seen that choosing a des node with smaller degree (i.e., smaller
p) tends to result in smaller V' (c, &); and thus maintains commu-
nity structure better. Therefore, a smaller p should be selected in
constrCRlink.
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Figure 5: (Best viewed in color.) Comparison of the infected
population under the SIS model. Our methods, CRlink and
constrCRlink, have similar infected rates in the population to
NetMelt*. But, our methods maintain the community structure
of the population while NetMelt* does not.
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Figure 6: The impact of parameter p (i.e., the node-degree con-
straint) in constrCRlink. The smaller the p, the smaller the
V(c, €) (i.e., less change in the community structure).
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Figure 7: (Best viewed in color.) Average degree of src, end
and des nodes selected by our algorithms on the FB-1 and FB-
2 graphs. src and end nodes have relatively high degrees, while
des nodes have relatively low degrees.
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Figure 8: (Best viewed in color.) Relationship between the av-
erage eigenscore value and edge degree d. (which is the sum of
the two endpoints’ degrees). Larger degree edges tend to have
higher eigenscores.

4.3.2 GRlink vs. CRlink

According to Figure 3, GRlink has the poorest performance in
V' (c, &). CRlink overcomes this weakness via a within community
constraint. Before analyzing the performances of them in preserv-
ing community structure, we first investigate the degree patterns of
src, end, and des nodes. Figures 7(a) and 7(b) report the average
degrees of these nodes in GRlink and CRlink with K = 2000. We
find that des nodes have low mean degrees and most of them are
singletons or connect to one neighbor. src and end nodes have rel-
atively high degrees, which means that we choose rf edges with
both high degree endpoints and select low degree des nodes in edge
rewiring. This is reasonable because most of the highest eigenscore
rf edges have relatively high degree endpoints and most of the
lowest eigenscore rt edges should connect relatively low degree
nodes, as reported in Figure 8. With these findings, we can assume
a common comparison between GRlink and CRlink, as illustrated
in Figure 9.

From Figure 9, GRlink chooses rf edges with high degree end-
points and selects low degree des nodes outside the community.
CRlink implements edge rewiring within community and chooses
low degree des nodes in the same community. This difference leads
to the poor performance of GRlink and the good performance of
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S~/ /// ) CRlink

= gr_c(:%jgn;d : sreQ Qend
“ O des Odes

Figure 9: (Best viewed in color.) Comparison case between GR-
link and CRlink. The grey and yellow dashed ellipses represent
two communities. The red line and red dashed line denote r £
and rt edges, respectively. The grey dashed lines denote non-
existing edge candidates for edge rewiring. The des node is
easily reassigned to other communities in GRlink. The src and
end nodes in CRlink have stronger a connection (i.e., a common
neighbor des node) than that in GRlink.

CRlink in maintaining community structure:

e srcand end nodes in CRlink hold stronger connections than
that in GRlink. As shown by Figure 9, the des node becomes
a common neighbor of src and end nodes in CRIink while
the des node is the only neighbor of src node in GRlink.

e In GRlink, due to low degrees and weak connections with
intra-community nodes, the des nodes are easily reassigned
to the community of src nodes. See Figure 9, where the des
nodes are in a new community in GRlink.

To quantify the influences of the aforementioned points in com-
munity structure, we define the Rewiring Community Index (RCT).
For the first point, we define

rop = Y el

€;j cd

where ¢€ is the community assignment vector of A. I is the in-
dication function, which equals to 1 when c¢(i) = c¢(j) or &(i) =
().
For the second point, we define
Tlei S T1a(i) = &
Ron = 3 Lle) £ el 116 = )
TTe(i) # c(j)]

RC'I quantifies the similarity of community assignments of r £
edges’ two endpoints (i.e., src and end nodes) between the original
graph and the perturbed graph, which is measured in both GRlink
and CRlink. RC'I; quantifies the community reassignments of des
nodes in GRlink. Figure 10 (a) and Figure 10 (b) show the results
of RCIy and RCI,. From these two plots, RC'Iy of CRlink is over
0.4 for most budgets while the corresponding value for GRlink is
less than 0.1. In addition, RC'I; of GRlink is higher than 0.74. So,
we find that CRlink has high similarity in community assignments
of src and end nodes; consequently it has a good performance in
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Figure 10: (Best viewed in color.) Rewiring Community Index (RCI) of our methods with different budgets /X on the two FB graphs.
For simplicity of visualization, the two FB graphs are denoted by the same color lines. (a) constrCRlink and CRlink have higher RCI,
than GRlink, which means that they are able to keep the same community assignment for the src and end nodes. (b) GRlink tends
to reassign the community of the des node (i.e., it has high RC'I,). (c¢) constrCRlink is able to maintain the community assignment of

the des node (i.e., it has low RC1>).

maintaining community structure. GRlink performs badly in keep-
ing community assignments of src and end nodes, and the com-
munity reassignment of des nodes occurs frequently. Both of these
lead to the poor performance of GRIink on maintaining community
structure.

4.3.3 CRlink vs. constrCRlink

Results of Section 4.2.1 illustrated that constrCRlink performs
best in V' (c, &), which means that it further improves the perfor-
mance of CRlink by introducing a node-degree constraint (p). Sim-
ilar to the analysis of GRlink and CRlink discussed in the previous
section, we measure the degree patterns of the three kinds of nodes
in constrCRlink. Figure 7(c) reports that constrCRlink also chooses
rf edges with high degree endpoints and selects within community
des nodes with small degree constraint (p = 1). In the same way,
Figure 11 shows a case comparison between CRlink and constrCR-
link.

In Figure 11, we observe that both CRlink and constrCRlink
choose des nodes in the same community. The difference is that
constrCRlink only chooses des node whose degree is less than 2.
This raises two points, which influence the constrCRIink’s perfor-
mance.

e The src and end nodes keep strong connections in constr-
CRlink. As illustrated in Figure 11, the des nodes become
common neighbors of the src and des nodes in constrCR-
link.

e constrCRlink tends to connect within community des nodes,
which are weakly connected to the others within the com-
munity; and keeps them from being reassigned to other com-
munities. As illustrated in Figure 11, a des node adds one
neighbor (src node) within the community in constrCRlink.

To quantify influence, we measure the RC' Iy and RC'I5 of con-
strCRlink, where RC'I5 is defined as:

e SR ACOEL ) R CUERG)

e jEV

RC'I> quantifies the ability of constrCRlink in preventing com-
munity reassignments of the des nodes. From the plot in Fig-

ure 10(a), we observe that RC'Iy of constrCRlink is above 0.5 at
most budgets and higher than that of CRIlink. Very low values (less
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Figure 11: (Best viewed in color.) Case comparison between
CRlink and constrCRlink. The grey dash circle represents a
community. The red line and the red dashed line denote rf
and rt edges, respectively. constrCRlink keeps the low-degree
des node from being reassigned to other communities and holds
a strong connection (inn the form of the common neighbor des
node) between the src and end nodes.

than 0.12) of RC'I5 in Figure 10(c) demonstrate the strong ability
of constrCRIlink in keeping the des nodes in the same community
as before. Both of these result in the good performance of constr-
CRlink.

S. RELATED WORK

The relevant literature for our work can be categorized into two
parts: controlling entity dissemination and analyzing community
structure.

Controlling entity dissemination. The dynamic processes on
large graphs like blogs and propagations [7, 12] are closely re-
lated to entity propagation. For the entity dissemination control,
Chakrabarti et al. [3] and Prakash et al. [18] prove that the only
graph-based parameter determining the epidemic threshold is the
leading eigenvalue of the adjacency matrix of graph. Tong et al. [21]
introduce the NetMelt algorithm, which minimizes the dissemina-
tion on a graph by deleting edges with the largest eigenscore associ-
ated with the leading eigenvalue (see Section 2 for the definition of



eigenscore). Long et al. [14] show that NetMelt performs poorly on
graphs with small eigen-gaps (like many social graphs) and intro-
duce MET (short for Multiple Eigenvalues Tracking) to overcome
the small eigen-gap problem. Chan et al. [4] track multiple eigen-
values for the purpose of measuring graph robustness. Kuhlman
et al. [11] study contagion blocking in graphs via edge deletion.
Saha et al. [20] developed GreedyWalk approximation algorithms
for reducing the spectral radius by removing the minimum cost set
of edges or nodes. To the best of our knowledge, no previous work
has investigated edge relinkage in order to minimize dissemination
while maintaining community structure.

Analyzing community structure. Besides entity dissemination
control, we try to minimize the change in the graph’s community
structure after perturbation. Many efforts have been devoted to
community structure detection and analysis. The past literatures
[6, 1, 19, 5] propose several effective methods to detect communi-
ties in real-world graphs. Leskovec et al. [15] investigate a range
of community detection methods in order to understand the differ-
ence in their performances. Nematzadeh et al. [16] investigate the
impact of community structure on information diffusion with the
linear threshold model. Karrer et al. [9] study the significance of
community structure by measuring its robustness to small pertur-
bations in graph structure. Motivated by this last work, we use the
difference in community assignment of each node to quantify the
abilities of the different algorithms in preserving the graph’s com-
munity structure.

6. CONCLUSIONS

We present the problem of minimizing dissemination in a popu-
lation (that is represented as a complex network) while maintaining
its community structure (where community is defined as a group of
individuals with more links between them than to outside mem-
bers). Due to the poor performance of edge deletions in preserving
community structure, we introduce the edge-rewiring framework
and two algorithms: CRlink and constrCRlink. CRlink tends to
rewire edges within a community; constrCRlink improves CRIlink’s
performance by adding node-degree constraint to rewired edges.
Our experimental results on several real-world graphs show that
CRlink and constrCRlink preserve most of the efficacy (more than
98.6%) of NetMelt* in dissemination minimization. Besides, CR-
link and constrCRlink perform much better in preserving commu-
nity structure (only 4.5% change) than other methods like NetMelr*
(with 13.6% change). Furthermore, we investigate the reasons for
the different performances of our algorithms.
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