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THE PROBLEM



The Problem

* Internet: vast amount of content
— 800+ million Facebook users
— Average 300 friends on Facebook

* How to find personal interests ?
— What do you like ?

e (Social) Recommendation
— What would you like ?
— How to exploit social networks ?



Recommendation

* Predict missing from observed ratings?
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Social Recommendation

 Adds indirect social context to users
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CURRENT SOLUTIONS



Content-based Filtering (CBF)

* Predict like / dislike directly from features
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Collaborative Filtering (CF): KNN

* No features? k-nearest neighbor, e.g., k=2
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Collaborative Filtering: PMF

* Or low k-rank matrix factorization, e.g. k=2
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Stern, Herbrich, Graepel, WWW-09

Features in CF: Matchbox
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Social CoIIaboratlve Filtering
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NEW SOLUTIONS



Objective Framework
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Proposal 1%

e Use interactions to learn latent spectral
projection of user and features

Don't predict S, ,, use it to
vary regularization strength!
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Proposal Il

— Directly model information diffusion

Features such as:

Did user z (a friend of x),
also like y?
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Proposal Il

Exploit the fact that users have common

interests in restricted areas
— Use co-preferences P

X,Z,y
* Did users x and z (dis)like item y?

\

Reweight user
regularization according
to latent dimensions for

co-preferred item.

)
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— And also spectral variant
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USER TRIALS



ANU Link Recommender (LinkR)

e Recommend 3 daily links on Facebook

Non-friend
Recommendation
(only link context)

Rating +
Optional Link
Feedback

a Friend
Recommendation
(friend message

Y link context)

| 's App View

http:/ /fwww.youtube.com/watch?v=rtOvBOTyX00

Christina Perri - A Thousand Years (Official Music Video)

© 2011 WMGC "a thousand years” on itunes:

http:/ fatlr.ec/npHAAW directed by: jay martin "a thousand years”
is a brand new song me + my best friend david hodge...

Rate this Recommendation: (*) Not Rated(_ Like( | Dislike

Comment: S5ave Comment

Post Link to Your Wall
Recommended on Mon, 30 Jan 2012 at 09:39

Original Post from Khoi-Mguyen Tran on Wed, 18 Jan 2012 at 05:00
Message: Religion for Atheists

http:/ /fwww.ted.com/talks/alain_de_botton_atheism_2_0.html?
awesm=on.ted.com_deBotton&utm_campaign=&utm_medium=on.ted.com-
static&utm_source=direct-on.ted.com&utm_content=awesm-

publisher

Alain de Botton: Atheism 2.0 | Video on TED.com

What aspects of religion should atheists (respectfully) adopt?
Alain de Botton suggests a “religion for atheists" -- call it
Atheism 2.0 -- that incorporates religious forms and traditions
to satisfy our human need for connection, ritual and
transcendence.

19 /32



Trials and Algorithms

e Trial 1: Baselines
— SVM (Content-based filtering — CBF)
— KNN (Collaborative filtering — CF)
— Matchbox — MB (CF + CBF)
— Social Matchbox — SMB (CBF + CF + Soc. Reg)

* Trial 2: New Objectives
— SMB
— Spectral Reg. variant of SMB — Sp. MB
— SMB + Information Diffusion —S. Hybrid
— MB + Spectral Copreference Reg. —S. CP



LinkR Statistics

Table #Records #Records Breakdown Count Count
(App Users) (App User (App Users) (App User
Users 4 Male 73 19,742 >
Column #Non-empty | #Non-empty Female N 29 16,659
(App Users) (App User High School 10 qaﬁt
and Friends) College 115 29,223
Gender 102 36,401 Graduate 56 7733
Birthday 103 27,624 School
App Users Posts Tags | Comments Likes
Wall 27,955 5.256 15,121 11,033
Link 3,974 — 5,757 4,279
Photo 4,147 22,633 8,677 5.938
Video 211 2,105 1,687 710
App Users Posts Tags | _Comments Likes
and Friends
Wall /m 912,687 2,152,321 | 1 5
Link [ 514,475 — 693,930 666,631
Photo \| 1,098,679 | 8.407.822 2,978,635 | 1,960,138
Video \% 858,054 463,401 308,763
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LinkR Usage Statistics

Trial 1 — Aug. 25, 2011 to Oct. 13, 2011

SMB | MB SVM KNN
Users All 26 26 28 28
Users > 10 13 9 13 H
Users > 30 9 3 11 3
Ratings All 819 526 901 242
Ratings > 10 | 811 505 896 228
Ratings > 30 | 737 389 851 182
Clicks All 383 245 413 218
Trial 2 — Oct. 14, 2011 to Feb. 10, 2012
SMB | S5p.MB [ 5p.CP | SHyb. | "Latal
Users All 27 27 29 28 111
Users > 10 15 11 8 12 46
Users > 30 12 9 5 10 /36
Ratings All 1434 | 882 879 614 3809
Ratings > 10 [ 1411 | 878 863 602 3754
Ratings > 30 | 1348 | 850 802 570 3570
Clicks All HH3 320 278 199 1350




RESULTS



Likes (dark) Trial 1: Baselines

over
Dislikes (light)
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Trial 2: New Objectives
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Click Behavior

Ratings for Clicked Links
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Impact of Popularity

. Bikes vs. Popularity for Friend Links L{I%es vs. Popularity for Non-Friend Links
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CONCLUSIONS AND
FUTURE WORK



Conclusions

* Feature-based social spectral
regularization

— Undeniably the top-performer

— As good as direct information diffusion
features

—Interactions stronger than co-preferences
e Or co-preferences harder to optimize?



Conclusions

Overall

—Machine learning works!
e Better than more ad-hoc methods like KNN
 Power of latent factorization methods

— Use socially informed regularizers!

* In general, users who interact a lot have similar
preferences!



Future Work

* Are all interactions equal?

e Nol

— Learning predictiveness of fine-grained interactions
can do as well as MF, but with simple classifiers!

— Work in progress...



Special Thanks to

 Doug Aberdeen (Google Zurich) for supporting our
Google Grant
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our study!

THANK YOU !

linkr.anu.edu.au

e More information
* Link to Facebook app
e Contact Us'!
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Additional Slides



Experimental Design in Retrospect

* Experimental design

— Originally wanted to do active learning

* In our Google Grant proposal

e But with user uptake, difficult to evaluate this
— Need very active users (only 25% were active)

— Algorithms trialed can be evaluated for varied usage
* All data counts, good!
* But stuck to original experimental design for consistency
— Hard to statistically compare small user groups
— If do again, would interleave interactions

— But main results of Spec. MB fairly sound



Aside: Matrix Definitions

U1?1 ULI
U = ) )
UL,
Uk, Uk,1_
Vi Vi
V = :
Vi ;
Vi Vik.g

35/32



Proposal |

* Use interactions to learn latent projection of
user and features

Obj,,=>» > %(Sx,z — (Ux,Uz))”

X zcfriends(x)

=5 N %(SX’Z —x U ' Uz)”

X zecfriends(x)



Individual Link Comments

Individual Link Comments
Comment Type | # 70
not interested 88 | 36.5%
wrong language | 37 | 15.4%
really liked it! 35 | 14.5%
bad YouTube 25 | 10.4%
seen it already | 25 | 10.4%
problem / dead | 20 | 8.3%
outdated 71 2.9%
miscellaneous 4 1.7%




Survey

User Survey Comments

want more control over
recommendations made
(music, blogs, news)

want option to see > 3
recommendations

links need description /
context or explanation
of recommendation

more variety, diversity
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