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• Conclusions and Future Work 
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THE PROBLEM 
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The Problem 

• Internet: vast amount of content 
– 800+ million Facebook users 
– Average 300 friends on Facebook 

 

• How to find personal interests ? 
– What do you like ? 

 

• (Social) Recommendation 
– What would you like ? 
– How to exploit social networks ? 
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• Predict missing from observed ratings? 
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Social Recommendation 
• Adds indirect social context to users 
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CURRENT SOLUTIONS 
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Content-based Filtering (CBF) 
• Predict like / dislike directly from features 
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Collaborative Filtering (CF): KNN 
• No features? k-nearest neighbor, e.g., k=2 
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Collaborative Filtering: PMF 
• Or low k-rank matrix factorization, e.g. k=2 
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Features in CF: Matchbox 
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Social Collaborative Filtering 
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NEW SOLUTIONS 

13 / 32 



Objective Framework 
min 

w, U, V 

Standard Regularizers 

Social Regularizers 

Standard Error Objective 

This is first proposal… 

feature-based S.R. 
  

Other social 

regularizers? 

Other predictors 

aside from MF? 

Prediction 

objectives and 

regularizers to 

constrain 

learning. 
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Proposal 1 ½  

• Use interactions to learn latent spectral 
projection of user and features 

Don’t predict Sx,z, use it to 

vary regularization strength! 
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Proposal II 

– Directly model information diffusion 

Features such as:  
 

Did user z (a friend of x), 

also like y? 
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Proposal III 

• Exploit the fact that users have common 
interests in restricted areas 

– Use co-preferences Px,z,y  

• Did users x and z (dis)like item y? 

 

 

 

 

 

– And also spectral variant 

Reweight user 

regularization according 

to latent dimensions for 

co-preferred item. 
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USER TRIALS 
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ANU Link Recommender (LinkR) 

• Recommend 3 daily links on Facebook 

Rating + 

Optional Link 

Feedback 

Non-friend 

Recommendation 

(only link context) 

Friend 

Recommendation 

(friend message 

+ link context) 

’s App View 
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Trials and Algorithms 

• Trial 1: Baselines 
– SVM (Content-based filtering – CBF) 

– KNN (Collaborative filtering – CF) 

– Matchbox – MB (CF + CBF) 

– Social Matchbox – SMB (CBF + CF + Soc. Reg) 

 

• Trial 2: New Objectives 
– SMB 

– Spectral Reg. variant of SMB – Sp. MB  

– SMB + Information Diffusion – S. Hybrid 

– MB + Spectral Copreference Reg. – S. CP 
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LinkR Statistics 
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LinkR Usage Statistics 
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RESULTS 
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Trial 1: Baselines 

Recommendations 

from Friends 

Likes (dark) 

over  

Dislikes (light) 

Lower is better 
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Trial 2: New Objectives 

Friends Non-friends 
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Click Behavior 
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CONCLUSIONS AND 
FUTURE WORK 
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Conclusions 

• Feature-based social spectral 
regularization 
– Undeniably the top-performer 

– As good as direct information diffusion 
features 

– Interactions stronger than co-preferences 
• Or co-preferences harder to optimize? 
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Conclusions 

• Overall 
 

– Machine learning works! 
• Better than more ad-hoc methods like KNN 

• Power of latent factorization methods 
 

– Use socially informed regularizers! 
• In general, users who interact a lot have similar 

preferences! 
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Future Work 

• Are all interactions equal? 

 

• No! 

– Learning predictiveness of fine-grained interactions 
can do as well as MF, but with simple classifiers! 
 

– Work in progress… 
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THANK YOU ! 

Special Thanks to 

• Doug Aberdeen (Google Zurich) for supporting our 
Google Grant 

• Sally-Ann Williams (Google Sydney) for 100+ pairs of 
Google flip-flops, which helped attract many users to 
our study! 

linkr.anu.edu.au 
• More information 

• Link to Facebook app 

• Contact Us ! 
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Additional Slides 



Experimental Design in Retrospect 

• Experimental design 
– Originally wanted to do active learning 

• In our Google Grant proposal 

• But with user uptake, difficult to evaluate this 
– Need very active users (only 25% were active) 

 

– Algorithms trialed can be evaluated for varied usage 
• All data counts, good! 

• But stuck to original experimental design for consistency 

– Hard to statistically compare small user groups 

– If do again, would interleave interactions 

 

– But main results of Spec. MB fairly sound 
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Aside: Matrix Definitions 
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Proposal I 

• Use interactions to learn latent projection of 
user and features 
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Individual Link Comments 

37 / 32 



Survey 
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